
www.manaraa.com

Information Systems Education Journal (ISEDJ) 10 (5)
 October 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 61
www.aitp-edsig.org /www.isedj.org

The Learning and Productivity Benefits to
Student Programmers from Real-World

Development Environments

Justin C. W. Debuse
jdebuse@usc.edu.au

Meredith Lawley

mlawley1@usc.edu.au

Faculty of Business,
University of the Sunshine Coast

Maroochydore DC, Australia

Abstract

Existing research and practice in software development environments shows no clear consensus on
the most appropriate development tools to use; these may range from simple text editors through
teaching-oriented examples to full commercial integrated development environments (IDEs). This
study addresses this gap by examining student perceptions of two development environments at
opposite ends of the complexity spectrum. The results, gathered over several years using students at
a range of experience levels, suggest that complex commercial IDEs are appropriate for programming
education, even for entry-level students. Indeed, they offer a range of features that may improve the
understanding and productivity of students. However, given the greater simplicity of simple text
editors and potential for students to become overly dependent upon the support mechanisms provided
by IDEs, teaching IDEs in combination with simple text editors appears to offer an ideal combination
to maximize learning opportunities and student employability.

Keywords: integrated development environment, IDE, programming, learning, teaching

1. INTRODUCTION

A key challenge for ICT educators is to teach
underlying concepts, such as structured analysis
and data modelling (Tastle & Russell, 2003), so
that students have transferable skills and deep
understanding. However, the employment
market demands specific skills such as ASP
(Colomb, Death, Brown, & Clarkson, 2001) or
Java (Liu, Liu, Lu, & Koong, 2003), and a
compromise must therefore be found between
technology-specific details and fundamental
principles. Programming courses must strike
this balance not only for the language but also

the development environment. For example,
the popular Java language can be taught using a
range of environments, from a command line
interface and text editor through a simple
teaching-oriented integrated development
environment (IDE) to a complex commercial
IDE. The selected environment must fulfil a
number of different and potentially conflicting
criteria: employment market demand, learning
support and ease of use.

The demand by employers appears highest for
text editors (Russell, 2005a), although users
show preference for using IDEs (Computerworld,

www.manaraa.com

Information Systems Education Journal (ISEDJ) 10 (5)
 October 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 62
www.aitp-edsig.org /www.isedj.org

2005; Russell, 2005a). Learning support is high
in teaching-oriented systems such as BlueJ,
which have been found to assist student
understanding of the object-oriented paradigm
(Van Haaster & Hagan, 2004) and allow unusual
topic orderings to be used (Murray, Heines,
Moore, Trono, Kolling, Schaller, & Wagner,
2003). However, commercial IDEs such as
JBuilder can also offer considerable teaching and
learning support (Liang, 2005).

The ease of use of a development environment
is likely to be affected by its complexity.
Indeed, the complex nature of commercial IDEs
has been used to justify using teaching-oriented
alternatives (Kölling, Quig, Patterson, &
Rosenberg, 2003), and may explain the high
popularity of text editors for education (Russell,
2005a) and low usage of CASE tools for
application development at both undergraduate
and postgraduate levels (Chinn, Lloyd, & Kyper,
2005). However, there appears to be no clear
consensus on whether IDE usability should be
criticised (Kline, Seffah, Javahery, Donayee, &
Rilling, 2002; Murray et al., 2003; Reis &
Cartwright, 2004; Seffah & Rilling, 2001) or
praised (Dujmovic & Nagashima; Murray et al.,
2003), and students have not shown a
preference for specific development
environments (Russell, 2005a). Programming
textbooks show similar dissent; examples exist
that use commercial IDEs such as JBuilder
(Liang, 2004), teaching-oriented IDEs (Barnes &
Kolling, 2008), text editors (Farrell, 2003), or
allow educators to choose between a text editor
and IDE (Liang, 2009).

The impact of development environments upon
student learning and understanding from a
formative perspective is one of the least studied
areas of IDE research (Gross & Powers, 2005).
Existing studies, particularly those which
measure student performance directly (Kordaki,
2010; Vogts, Calitz, & Greyling, 2008), have
examined the educational suitability of IDEs to
only a limited level of granularity; for example,
Kordaki (2010) examines different development
environments across broad areas such as the
quality of students’ code, rather than the
features of the environments in detail. Further,
although educational IDEs appear to yield
improvements in student understanding (Rigby
& Thompson, 2005; Van Haaster & Hagan,
2004; Xinogalos, Satratzemi, & Dagdilelis, 2006)
and programming performance (Kordaki, 2010;
Vogts et al., 2008), they require room in the
syllabus to be found for students to convert to

real world environments, which is unlikely to
prove easy (Xinogalos et al., 2006).

This study therefore attempts to extend existing
work to a finer level of granularity, in order to
clarify the selection of development
environments for programming education by
determining whether the learning support and
ease of use of an environment for which
significant employment market demand exists
are sufficiently strong for it to be successfully
used without going through the intermediate
step of using a teaching-oriented IDE. The
environment used is Borland’s
JBuilder/Together, one of the object-oriented
analysis and design market leaders (Blechar,
2004) and now incorporated into the popular
Eclipse environment. The students examined
are from a single regional university and thus
likely to have greater requirements for learning
support and ease of use than their metropolitan
equivalents. Moreover, the students are
examined at three stages in their programming
education to determine the performance of the
environment across a range of experience levels.

2. METHOD

The commercial IDE examined within this study
was JBuilder from Borland; this was supplied
within the teaching laboratories and used to
deliver lectures and tutorials. Programming
students were studied from 2005 to 2008;
during 2007 JBuilder was incorporated into the
Eclipse system, which offered very similar
functionality. Students were surveyed across
the three groups described below, to allow
differences between programmers across a
range of experience levels to be investigated.

Group 1: Introductory Java Programming

The first group of students took an introductory
course in Java programming, held during
semester 2 each year from 2005 to 2008.
Students’ attitudes to the IDE were surveyed
using an instrument adapted from (Hede, 2005);
the 2008 version is presented within Appendix 2.
The first section established their prior
knowledge of programming and IDEs, using
questions adapted from (Russell, 2005b). The
section included items determining whether
JBuilder and Java were the most commonly used
development environment and language, to
confirm that students met the requirements of
the study.

www.manaraa.com

Information Systems Education Journal (ISEDJ) 10 (5)
 October 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 63
www.aitp-edsig.org /www.isedj.org

The second section investigated the complexity
of JBuilder, since this drawback of commercial
IDEs has been used to justify using teaching-
oriented IDEs for education (Kölling et al.,
2003). The statements in Table 1, labelled JBA,
were used to assess how this affected students,
both when they began learning to use JBuilder
and once they had become proficient in using it;
the available responses ranged from five
(strongly agree) through three (neutral) to one
(strongly disagree). Statement JBA1 is similar
to the learnability scale from the Software
Usability Measurement Inventory (SUMI)
(Kirakowski & Corbett, 1993), described by
(Kline et al., 2002). However, Kline et al.
(2002) also cite a minimum sample size of 50
subjects to be confident of the results (Nunnally
& Bernstein, 1994). This exceeds the current
student numbers for the courses examined
within this paper, and so SUMI scales were not
used. Statements JBA3 to JBA6 were instead
added to the questionnaire to cover the missing
SUMI scales of affect, helpfulness, efficiency and
control respectively.

The instrument also included questions, labelled
JBB, to measure how aspects of the IDE
improved or impaired understanding of the
course concepts and productivity in producing its
required deliverables. Five point Likert scales
were again used, with one set (labelled A)
determining the effect on understanding and a
second (labelled B) measuring the effect on
productivity; however, unlike the previous
scales, the values ranged from 5 (strong
improvement) through 3 (no effect) to 1 (strong
impairment), together with 0 (if they have never
used the feature or respond that this is not
applicable). The IDE aspects investigated are
shown in Table 2; some were adapted from
(Dujmovic & Nagashima; Russell, 2005a;
Storey, Michaud, Mindel, Sanseverino, Damian,
Myers, German, & Hargreaves, 2003), and
features absent from the university Java
programming courses were excluded. The
instrument has some overlap with Russell's
(2005b) survey, although it examines the IDE
aspects at a greater level of detail.

Preliminary results from this study suggested
that students may become over-reliant upon the
support mechanisms offered by JBuilder. The
course examined was therefore revised after its
2005 intake to use a text editor (Programmers
Notepad) initially, followed by JBuilder, rather
than using JBuilder throughout. The second
survey and its successors thus contained

additional questions: PNA, which applied the
complexity statements in Table 1 to the text
editor rather than JBuilder; PNB, which
investigated similar IDE aspects to those listed
within Table 2, but aimed at the text editor
rather than JBuilder (with a corresponding
reduction in the number of aspects due to the
more limited functionality of the text editor);
and JBPN, adapted from (Russell, 2005b), which
determines which environment students would
have preferred to use to learn programming,
together with which environment they would
rather currently program with (the JBPN
questions were administered in a separate
survey during 2006 but incorporated into the
main survey from 2007 onwards).

Group 2: Intermediate Java Programming

The second group of students took an
intermediate level follow-on from the
introductory Java programming course taken by
group 1, held during semester 1 from 2006 to
2008. The course taken by group 1 was a
prerequisite for the course taken by this group;
a number of students from group 1 would
therefore subsequently join group 2. For
example, 68% of the students who took the
intermediate course during 2006 had previously
taken the introductory course during 2005. The
group 1 instrument was applied for the group 2
students with minor modifications corresponding
to their differing course enrolments.

Group 3: Architecture & Systems
Integration

The third group of students took a capstone
architecture and systems integration course in
semester 2 2005, where programming skills
were applied to systems integration tasks, using
JavaScript and the Notepad text editor. The
survey was only administered in 2005, and used
an adaptation of the group 1 instrument which
was modified to reflect different course
enrolments and the use of Notepad in place of
Programmers Notepad; further, section PNB
(IDE aspects) was omitted due to the limited
functionality of Notepad.

Analysis of Results

Missing values were identified as such when the
data was entered and excluded from calculations
on a pairwise basis; this means that the
response for a student was only excluded from a
calculation if data required by that calculation

www.manaraa.com

Information Systems Education Journal (ISEDJ) 10 (5)
 October 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 64
www.aitp-edsig.org /www.isedj.org

was missing. Responses of zero for the IDE
aspect statements were also treated as missing,
as this value represented that the statement
was not applicable or that the respondent had
never used the feature. If a respondent
indicated that they had not used a development
environment but then proceeded to respond to
items regarding the environment then these
responses were excluded and treated as
missing. Similarly, for each aspect statement
there are two questions, covering understanding
and productivity; if a response to either of these
questions indicated that the aspect was never
used or was not applicable then both were
treated as missing data.

Hypothesis Testing

The results of the survey within this study were
used for hypothesis testing, using a similar
approach to that described in (Debuse, Lawley,
& Shibl, 2007, 2008; Stevens & Jamieson,
2002). For the complexity assessment
statements (labelled JBA and PNA), two
hypotheses were formed; the first was that
respondents agreed with the statement and the
second was that respondents disagreed. Such
an approach was used in place of a single
hypothesis since responses could indicate
agreement, neutrality or disagreement; thus, a
hypothesis based on agreement may fail to hold,
but this does not necessarily indicate
disagreement. Specifically, for the first
hypothesis to hold, the response must be
greater than three; this equates to a response
above ‘Neutral’, which may be high enough to
equate to ‘Tend to Agree’ or ‘Strongly Agree’.
For the second hypothesis to hold, the response
must be three or less; this equates to a
response of ‘Neutral’, ‘Tend to Disagree’ or
‘Strongly Disagree’. The 95% confidence
interval for the mean response value was
computed, and its lower and upper bounds were
used to test the first and second hypotheses
respectively. For example, consider lower and
upper bounds for the 95% confidence interval
for the mean response to statement JBA1 of 3.4
and 5.1 respectively. Such values would cause
the first hypothesis for JBA1 to be accepted,
since 3.4 is greater than three, and the second
to be rejected, since 5.1 is greater than three.
Such a result would lead to the conclusion that
respondents agreed with JBA1.

Similar hypotheses were formed and tested for
the aspect statements (labelled JBB and PNB).
For each aspect, two hypotheses were again

formed; the first was that it had improved
respondents’ understanding of the course
concepts and the second was that it had
impaired them. A third and fourth hypothesis
were similarly formed for each aspect; these
concerned its improvement or impairment
respectively to respondents’ productivity. The
lower end of the 95% confidence interval of the
mean response to the understanding scale had
to exceed three for the first hypothesis to hold;
for the second, the upper end had to be three or
less. Similarly, lower and upper ends of the
95% confidence interval of the mean response
to the productivity scale were calculated. If the
lower exceeded three then the first hypothesis
held; an upper value of three or less caused the
second hypothesis to hold.

3. RESULTS

The total responses received across all surveys
totalled 167; the breakdown of these, together
with key demographic information, hypotheses
and preferred development environments are
presented in the following sections.

Demographics

Table 3 shows that all groups represent junior
programmers, with at most one to three years’
experience. Group 1 are the most junior, with
responses being mainly less than one year
rather than the one to three years for groups 2
and 3. All groups apart from 3 report JBuilder
as the IDE used; the majority of groups used
JBuilder the most. The JBuilder environment is
thus very familiar to the students, and all groups
had the most programming experience in Java.

The demographics thus suggest that the
students examined meet the requirements of
this study, namely junior programmers at
differing points in their programming education,
with experience in Java and JBuilder.

Hypotheses

The left half of Table 4 shows the hypotheses
that held for each group; hypothesis 1 (H1)
holding is denoted by 1, and hypothesis 2 (H2)
holding is denoted by 2. An empty cell shows
that neither hypothesis held; nor does NA show
that the hypothesis was tested for the specified
year.

The right half of Table 4 summarises the total
number of times that hypotheses 1 and 2 held

www.manaraa.com

Information Systems Education Journal (ISEDJ) 10 (5)
 October 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 65
www.aitp-edsig.org /www.isedj.org

across all groups, along with the percentage of
non-NA groups for which hypotheses 1 and 2
held; these summaries are also given for group
1 across all years together with group 2 across
all years. Grey denotes rows for which
hypothesis 1 holds for every group examined,
and bold denotes rows for which hypothesis 1
holds for no group examined.

The Notepad results for group 3 are not included
in the table as they were only recorded for a
single group. For these PNA statements,
hypothesis 1 held for statements PNA1 and
PNA2; hypothesis 2 held for PNA4.

Table 4 suggests that, for some JBuilder aspects
(denoted by grey rows, starting at aspect
JBB1A), every group examined found them to
yield understanding and/or productivity benefits.
Of these aspects, the following yielded both
understanding and productivity benefits:

 Automatic bracket/brace matching
 Automatic code formatting
 Automatic completion of words in

programs
 Display of parameter lists
 Automatic code colouring
 Automatic syntax error reporting
 Code audit warnings
 Breakpoint / line by line execution in

debugging
 Variable value viewing / modification in

debugging

The remainder of the aspects for which every
group examined reported benefits yielded
productivity but not understanding
improvements:

 Automatic creation of program code
 Automatic generation of Javadoc

comments
 Display of line numbers

There was no universal agreement on any other
area of JBuilder or Programmers Notepad, but
one area of Programmers Notepad (PNB4A – the
benefit of case conversion within Programmers
Notepad to understanding) was not perceived to
give understanding/productivity benefits within
any group. Further, respondents disagreed with
one of the Programmers Notepad utility / ease of
use statements (PNA4 – Programmers Notepad
gives me assistance in its use) in one group,
although they agreed with this within another.

The results can also be analysed in terms of
totals over all group 1 students compared to
totals over all group 2 students. In addition to
the grey cells noted above (which will have
100% hypothesis 1 coverage for both these
groups), these groups have 100% hypothesis 1
agreement for the following statements relating
to JBuilder:

 Automatic program code creation
improves understanding (group 1 and
group 2)

 Code creation wizards improve
productivity (group 1 only)

 Sync edit tool, which allows all instances
of a variable name to be changed by
editing a single instance of the name,
improves understanding and productivity
(group 1 only)

 Line number display improves
understanding (group 1 and group 2)

 Automatic Javadoc creation improves
understanding (group 1 and group 2)

 Javadoc integration improves
understanding and productivity (group 2
only)

 The automatic link between Java and
UML improves understanding (group 1
only)

Further, group 1 has 100% agreement with
hypothesis 1 for the following statements
relating to Programmers Notepad:

 Learning to use Programmers Notepad is
straightforward

 Programmers Notepad automatic code
colouring improves productivity

 Programmers Notepad display of line
numbers improves understanding and
productivity

Items for which no agreement was shown over
the group 1 and/or group 2 groups, in addition
to PNB4A described above, are:

 I feel I am in control of JBuilder when I
use it (group 2 only)

 The automatic Java/UML link improves
understanding and productivity (group 2
only)

 Once you have learned to use
Programmers Notepad then producing
Java software with it is straightforward
(group 2 only)

 Using Programmers Notepad is
enjoyable (group 2 only)

www.manaraa.com

Information Systems Education Journal (ISEDJ) 10 (5)
 October 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 66
www.aitp-edsig.org /www.isedj.org

 Programmers Notepad gives me
assistance in its use (group 2 only)

 The amount of time and effort required
to perform tasks in PN is low (group 2
only)

 Programmers Notepad bookmarks
improve understanding and productivity
(group 2 only)

 Programmers Notepad display of line
numbers improves productivity (group 2
only)

Summarising the differences between groups 1
and 2, it appears that the two have similar views
regarding JBuilder, with differences in terms of
100% agreement only occurring for a small
number of items. Differences are more extreme
for Programmers Notepad, with only group 1
having some items which were agreed with
across all years, and only group 2 having some
items for which agreement was not found for
any year. The group 1 students therefore
appear much more positively disposed towards
Programmers Notepad than group 2.

The most experienced programmers (group 3)
were more positively disposed towards text
editors than group 2, finding Notepad easy to
use and produce Java software with, although
unsurprisingly they did not find it supportive.
However, they also found JBuilder to be easy to
produce software with, and found it enjoyable
and supportive to use. Further, the majority of
the features of JBuilder proved to be useful to
both their understanding and productivity.

Development Environment Preferences

Table 5 shows that there is no consensus across
all groups in terms of the preferred environment
to learn programming, although all but one
prefer a combination of JBuilder and
Programmers Notepad. All groups preferred to
use JBuilder to do programming now (one of
these was multi-modal).

4. DISCUSSION

The results suggest that students perceive
considerable benefits from a real-world
integrated development environment (IDE) such
as JBuilder, which represents their preferred
option for programming; however, a
combination of text editor and IDE appear to be
preferable for learning purposes. Students’
responses overall are very positive for almost all
areas examined within this study; the only

negative responses were for case conversion and
support within the text editor. All three groups
of students appeared not to believe that any of
the surveyed JBuilder IDE aspects impaired their
understanding of course concepts or
productivity. Indeed, the majority of the
JBuilder aspects examined were found to
improve productivity and/or understanding by all
groups, and every item was present in at least
one group.

A text editor appears particularly appealing to
the group 1 students, particularly in terms of its
reduced complexity; the more experienced
group 2 students appear to be less positively
inclined towards it, although the most
experienced group (3) appeared to view such
systems more favourably. However, the groups
have similar views regarding JBuilder, and a
number of its features in areas such as
debugging and simple code writing support
appear to yield understanding and productivity
benefits across all groups and years. Further,
features such as more sophisticated code writing
support appear to have universal benefit, but
only in terms of productivity; this is unsurprising
given the potential for such support to deny
students the opportunity to learn how to create
code.

The most experienced programmers (group 3)
were more positively disposed towards text
editors than group 2, finding Notepad easy to
use and produce Java software with, although
unsurprisingly they did not find it supportive.
However, they also found JBuilder to be easy to
produce software with, and found it enjoyable
and supportive to use.

The preference for simplicity by entry level
students is unsurprising given the documented
unsuitability of professional IDEs for teaching
given their complexity (Reis & Cartwright,
2004). Complicated aspects of the Java
language may also prove distracting (Reis &
Cartwright, 2004); this may explain why many
students in this find automated code creation to
improve their understanding, since at a
conceptual level the language complexities may
impair learning.

The results contain a number of points of
interest. Firstly, despite the study being held at
a regional university, at which student quality is
unlikely to be higher than at metropolitan
centres, the respondents did not find the
JBuilder IDE complex; indeed, both the novice

www.manaraa.com

Information Systems Education Journal (ISEDJ) 10 (5)
 October 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 67
www.aitp-edsig.org /www.isedj.org

and experienced programmers found it
straightforward to produce software with, and
the novices found JBuilder easy to learn. This
may be partially explained by the approach used
to teach the programming courses at the
university, with JBuilder being covered
extensively throughout lectures, tutorials and
the course text.

The overall status of JBuilder as the preferred
environment for students to use currently
matches existing research (Russell, 2005a). The
results also overlap with those testing a visual
programming language, where most students
perceived improvements in their understanding
and found the environment helpful (Collins &
Fung, 2002). The results of Kline et al. (2002),
who found that experienced programmers
viewed their IDE as helpful and efficient, also
support this study. However, unlike this study
their programmers did not find the IDE easy to
learn. Further, the preferred option identified
within this study of combining a text editor and
IDE for learning is unsurprising given the lack of
consensus in existing research on whether text
editors or IDEs would be preferred for training
purposes (Russell, 2005a).

It is surprising that the majority of the IDE
aspects examined were found to improve
understanding and/or productivity, with
debugging support being particularly useful; this
contradicts existing research suggesting that
integrated debugging is the least useful feature
for both learning and production programming
(Russell, 2005a). Other popular features such
as automated code completion and Javadoc
integration also proved unpopular (Russell,
2005a), although the popularity of areas such as
bracket matching and syntax highlighting is
supported by existing research (Russell, 2005a).
Further, these results are supported by studies
indicating that over 85% of user requirements
are satisfied by current IDEs, with JBuilder
offering the best performance (Dujmovic &
Nagashima), and that the JBuilder debugging
support is useful for teaching (Liang, 2005;
Murray et al., 2003). Similarly, the BlueJ
development environment has also improved
students' understanding of object-oriented
concepts (Van Haaster & Hagan, 2004);
correspondingly, the educational IDE objectKarel
yielded improvements in students’ perceptions
of their understanding (Xinogalos et al., 2006),
and students using the LECGO for C educational
IDE programmed more successfully than using a
non-teaching environment or pencil and paper

(Kordaki, 2010). Students’ performance using
the SimplifIDE educational plug IDE improved
the programming performance of students
compared to a professional IDE; their
understanding, measured by assessment grades,
was only superior using the educational IDE for
weaker students (Vogts et al., 2008). The Gild
educational plug in for Eclipse, when compared
to Eclipse, appears to improve students’
perceptions of their understanding but not their
programming performance or productivity (Rigby
& Thompson, 2005). Improvements in students’
perceptions of their understanding have also
been attributed to the Eclipse IDE (Hanks,
2006).

A study examining actual usage data for the
Eclipse IDE across 41 Java software developers
using the Mylar Monitor plug-in (Murphy,
Kersten, & Findlater, 2006) gave strong support
for the automatic program word completion that
was found to be so important to understanding
and productivity; the developers used such
completion as often as popular editing
commands such as copy and paste. The
importance of debugging identified within this
study was also supported (Murphy et al., 2006).
Further, the sync edit tool, which was
particularly popular with entry-level
programmers within this study and allows all
instances of a variable name to be changed by
editing a single instance of the name, was part
of the most popular refactoring command
(rename), which was used by all respondents
(Murphy et al., 2006).

The study has a number of limitations. Firstly,
although students are surveyed at three
different points in their education, the longer
term effects of the IDE are not examined.
Secondly, the most experienced group of
students do not use JBuilder within their course;
however, over half of them have used JBuilder,
although many of these will be relying on
memories of past courses. Thirdly, the study is
restricted to a single organisation and single
example of each tool. This approach, though
used in a number of existing studies (Collins &
Fung, 2002; Kordaki, 2010; Xinogalos et al.,
2006), restricts the extent to which the results
can be generalised, since specific details such as
courses, tools and student demographics may
contribute to the results, particularly as IDEs are
presented very positively to students within the
programming courses of this study; this does
however offer the advantage of limiting potential
confounding effects from areas such as

www.manaraa.com

Information Systems Education Journal (ISEDJ) 10 (5)
 October 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 68
www.aitp-edsig.org /www.isedj.org

instructor or syllabus variations. Fourthly, any
development environment that is successfully
used by students will have a positive effect on
their understanding, and the sequential usage of
the two environments examined means that
they will impact upon students at different
learning stages. Finally, the study examines
only students’ perceptions rather than actual
usage data. Although student perceptions of
software usability and its effects on their own
productivity would be unlikely to give inaccurate
responses, understanding has the potential to be
more problematic. This is because students’
perceptions of their own understanding may not
correlate well with their actual levels; also, the
surveys query students’ understanding of course
concepts without giving details of the specific
learning outcomes and course objectives to
which such concepts relate, which gives the
potential for weaker students to not realise that
they have missed certain concepts; the
objectives will also not be the same across all of
the courses. However, the overall approach is
not unusual, with a number of existing studies
measuring student perceptions of understanding
(Collins & Fung, 2002; Hanks, 2006; Rigby &
Thompson, 2005; Xinogalos et al., 2006).
Further, although weaker students have
demonstrated a tendency to overrate
themselves compared to educators, no
consistent over or underrating has been found
(Boud & Falchikov, 1989); indeed, a weak
positive correlation has been found between
student self assessment and educator
assessment (Falchikov & Boud, 1989), and a
review of existing work suggests that in the
majority of studies the number of cases where
student and staff marks agreed outnumbered
those where they disagreed (Boud & Falchikov,
1989). Moreover, the number of development
environment features for which understanding is
examined is too large to feasibly investigate
directly.

5. CONCLUSIONS

This study has highlighted a number of areas of
importance for software development education.
It appears that university students can learn
introductory programming using a complex
commercial IDE, without requiring the
intermediate step of using an educational
environment. Moreover, most of the IDE
aspects improve their understanding and/or
productivity. However, some of these
mechanisms can deny students the opportunity
to learn key programming skills that

environments with limited support require. This
suggests that the use of a text editor in addition
to a complex IDE would be an ideal combination
to maximize learning and future employment
opportunities. However, institutional constraints
such as the availability of IT service department
support clearly need to be taken into account if
such approaches are to be adopted.

Future research may determine how students’
perceptions of the utility of IDE features
correlate with their actual usage data, and
where the perceived benefits translate into
actual performance enhancements.

6. REFERENCES

Barnes, D. J., & Kolling, M. (2008). Objects

First with Java (4th ed.). Prentice Hall /
Pearson.

Blechar, M. (2004). Market Details for OOA&D
Tools, Update for 2005. Gartner Research.

Boud, D., & Falchikov, N. (1989). Quantitative
studies of student self-assessment in higher
education: a critical analysis of findings.
Higher education, 18(5), 529-549.

Chinn, S. J., Lloyd, S. J., & Kyper, E. (2005).
Contemporary Usage of CASE Tools in U. S.
Colleges and Universities. Journal of
Information Systems Education, 16(4), 429-
436.

Collins, T. D., & Fung, P. (2002). A visual
programming approach for teaching
cognitive modelling. Computers &
Education, 39(1), 1-18.

Colomb, R., Death, B., Brown, A., & Clarkson, A.
(2001). Trends in Computing Jobs - 2001.
Retrieved 13 May, 2003, from
www.itee.uq.edu.au/~colomb/Jobs-Anal-
2001.html

Computerworld (2005). Computerworld
Development Survey gives nod to C#.
Retrieved 30 August, 2005, from
http://www.computerworld.com/developmen
ttopics/development/story/0,10801,100542,
00.html

Debuse, J., Lawley, M., & Shibl, R. (2007). The
Implementation of an Automated
Assessment Feedback and Quality Assurance

www.manaraa.com

Information Systems Education Journal (ISEDJ) 10 (5)
 October 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 69
www.aitp-edsig.org /www.isedj.org

System for ICT Courses. Journal of
Information Systems Education, 18(4), 491-
502.

Debuse, J., Lawley, M., & Shibl, R. (2008).
Educators’ perceptions of automated
feedback systems. Australasian Journal of
Educational Technology, 24(4), 374-386.

Dujmovic, J., & Nagashima, H. Evaluation of
IDE's for Java Enterprise Applications.
Retrieved 15 August, 2005, from
http://www.seas.com/downloadUNReg/IDE6
p.pdf

Falchikov, N., & Boud, D. (1989). Student self-
assessment in higher education: A meta-
analysis. Review of Educational Research,
59(4), 395-430.

Farrell, J. (2003). Java Programming (2nd ed.).
Course Technology, Boston, Massachusetts.

Gross, P., & Powers, K. (2005). Evaluating
assessments of novice programming
environments. Paper presented at the First
international workshop on Computing
education research.

Hanks, B. (2006). Using Eclipse in the
classroom. Journal of Computing Sciences in
Colleges, 21(3), 118-127.

Hede, A. (2005). Personal Communication.

Kirakowski, J., & Corbett, M. (1993). SUMI:
The Software Measurement Inventory.
British Journal of Educational Technology,
24(5), 210-212.

Kline, R., Seffah, A., Javahery, H., Donayee, M.,
& Rilling, J. (2002, September 3-6).
Quantifying Developer Experiences via
Heuristic and Psychometric Evaluation.
Paper presented at the IEEE Symposia on
Human Centric Computing Languages and
Environments, Arlington, VA.

Kölling, M., Quig, B., Patterson, A., &
Rosenberg, J. (2003). The BlueJ system
and its pedagogy. Journal of Computer
Science Education, Special issue on Learning
and Teaching Object Technology, 13(4).

Kordaki, M. (2010). A drawing and multi-
representational computer environment for

beginners’ learning of programming using C:
Design and pilot formative evaluation.
Computers & Education, 54(1), 69-87.

Liang, Y. (2004). Introduction to Java
Programming with JBuilder (3rd ed.).
Prentice Hall.

Liang, Y. (2005). Learning Java Effectively with
JBuilder. In Introduction to Java
Programming (7th ed.).

Liang, Y. (2009). Introduction to Java
Programming, Comprehensive (7th ed.).
Prentice Hall.

Liu, X., Liu, L., Lu, J., & Koong, K. (2003). An
Examination of Job Skills Posted on Internet
Databases: Implications for Information
Systems Degree Programs. Journal of
Education for Business, 78(4), 191-196.

Murphy, G. C., Kersten, M., & Findlater, L.
(2006). How Are Java Software Developers
Using the Eclipse IDE? IEEE Software, 23(4),
76-83.

Murray, K., Heines, J., Moore, T., Trono, J.,
Kolling, M., Schaller, N., & Wagner, P.
(2003). Panel on Experiences with IDEs and
Java Teaching: What Works and What
Doesn't. Paper presented at the ACM SIG
CSE 8th International Conference on
Innovation and Technology in Computer
Science Education, Thessaloniki, Greece.

Nunnally, J., & Bernstein, I. (1994).
Psychometric Theory (3rd ed.). McGraw-Hill,
New York.

Reis, C., & Cartwright, R. (2004). Taming a
professional IDE for the classroom. Paper
presented at the SIGCSE technical
symposium on Computer Science Education.

Rigby, P. C., & Thompson, S. (2005). Study of
novice programmers using Eclipse and Gild.
Paper presented at the OOPSLA workshop on
Eclipse technology eXchange.

Russell, J. (2005a). Do the benefits of learning
Java using an IDE outweigh the in-depth
understanding gained by learning with a text
editor only? MSc Thesis, University of
Liverpool.

www.manaraa.com

Information Systems Education Journal (ISEDJ) 10 (5)
 October 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 70
www.aitp-edsig.org /www.isedj.org

Russell, J. (2005b). MSc Student Survey: Do
the benefits of using an IDE to learn Java
outweigh the understanding gained by
learning with a text editor only. Retrieved
30 August (from Google cache dated 27
February), 2005, from
http://www.jeremyrussell.co.uk/studentsurv
eyquestion.jsp

Seffah, A., & Rilling, J. (2001). Investigating
the Relationship between Usability and
Conceptual Gaps for Human-Centric CASE
Tools. Paper presented at the IEEE
Symposium on Human-Centric Computing
Languages and Environments, Stresa, Italy.

Stevens, K., & Jamieson, R. (2002). The
Introduction and Assessment of Three
Teaching Tools (WebCT, MindTrail, EVE) into
a Post Graduate Course. Journal of
Information Technology Education, 1(4),
233-252.

Storey, M., Michaud, J., Mindel, M., Sanseverino,
M., Damian, D., Myers, D., German, D., &
Hargreaves, E. (2003). Improving the
Usability of Eclipse for Novice Programmers.
Paper presented at the Object-Oriented
Programming, Systems, Languages and
Applications (OOPSLA), Anaheim, California,
USA.

Tastle, W., & Russell, J. (2003). Analysis and
Design: Assessing Actual and Desired Course
Content. Journal of Information Systems
Education, 14(1), 77-90.

Van Haaster, K., & Hagan, D. (2004, June).
Teaching and Learning with BlueJ: an
Evaluation of a Pedagogical Tool. Paper
presented at the Information Science +
Information Technology Education Joint
Conference, Rockhampton, QLD, Australia.

Vogts, D., Calitz, A., & Greyling, J. (2008).
Comparison of the effects of professional and
pedagogical program development
environments on novice programmers.
Paper presented at the Annual research
conference of the South African Institute of
Computer Scientists and Information
Technologists on IT research in developing
countries.

Xinogalos, S., Satratzemi, M., & Dagdilelis, V.
(2006). An introduction to object-oriented
programming with a didactic microworld:
objectKarel. Computers & Education, 47(2),
148-171.

www.manaraa.com

Information Systems Education Journal (ISEDJ) 10 (5)
 October 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 71
www.aitp-edsig.org /www.isedj.org

Appendix 1: Tables

Table 1. Complexity assessment statements
Statement Description
JBA1 Learning how to use JBuilder is straightforward.
JBA2 Once you have learned how to use JBuilder then producing Java software with it is

straightforward.
JBA3 Using JBuilder is enjoyable.
JBA4 JBuilder gives me assistance in its use.
JBA5 The amount of time and effort required to perform tasks using JBuilder is low.
JBA6 I feel I am in control of JBuilder when I use it.

Table 2. IDE Aspects
Aspect Description
JBB1 Automatic code formatting.
JBB2 Automatic completion of words within programs.
JBB3 Parameter list display
JBB4 Automatic creation of code such as missing curly brackets.
JBB5 Code creation wizards for tasks such as class creation.
JBB6 An editing mode that allows all instances of a variable name to be changed by editing a

single instance of the name.
JBB7 Integrated help system.
JBB8 Automatic code colouring.
JBB9 Line numbering.
JBB10 Automatic syntax error reporting.
JBB11 Code audit warnings.
JBB12 Deprecation warnings
JBB13 Debugging support through breakpoints and line-by-line execution.
JBB14 Debugging support through viewing and modifying variable values.
JBB15 Automatic bracket matching.
JBB16 Automatic generation of Javadoc comments.
JBB17 Javadoc integration through automatic creation and view of HTML associated with Javadoc

comments
JBB18 Automatic two-way links between UML diagrams and their associated program code.

www.manaraa.com

Information Systems Education Journal (ISEDJ) 10 (5)
 October 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 72
www.aitp-edsig.org /www.isedj.org

Table 3. Mode responses to demographics (percentage giving mode response in brackets)
Year 2005 2006 2007 2008
Group 1 3 2 1 1a 2 1 2 1
N 10 16 10 31 24 19 22 8 27
How much
programming
experience do
you currently
have (years)?

<1
(50%)

1-3
(69%)

1-3
(60%)

1-3
(35.5%)

<1
(33.3%)

1-3
(52.6)

<1
(50%)

<1
(37.5%),
1-3
(37.5%)
ie
bimodal

<1
(48.1%)

Which
Integrated
Development
Environments
(IDEs) have
you used?

JBuilder
(90%)

A text
editor
(75%)

JBuilder
(100%)

JBuilder
(93.5%)

JBuilder
(100%)

JBuilder
(94.7%)

JBuilder
(90.9%)

JBuilder
(87.5%)

JBuilder
(96.3%)

Which
Integrated
Development
Environment
(IDE) do you
use the most?

JBuilder
(80%)

JBuilder
(50%)

JBuilder
(100%)

JBuilder
(77.4%)

JBuilder
(87.5%)

JBuilder
(94.7%)

JBuilder
(63.6%)

JBuilder
(37.5%),
Eclipse
(37.5%)
ie
bimodal

Eclipse
(51.9%)

Which
programming
language do
you have the
most
experience in?

Java
(70%)

Java
(75%)

Java
(100%)

Java
(80.6%)

Java
(75%)

Java
(78.9%)

Java
(72.7%)

Java
(75%)

Java
(77.8%)

aThis survey of the preferred environment was run separately to the rest of the survey during 2006

www.manaraa.com

Information Systems Education Journal (ISEDJ) 10 (5)
 October 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 73
www.aitp-edsig.org /www.isedj.org

Table 4. Results of hypotheses (grey denotes rows for which hypothesis 1 holds for every group examined and bold denotes
rows for which hypothesis 1 holds for no group examined)
Hypotheses holding for each aspect (1 & 2 denote hypothesis number;
empty cells and NA denote no hypothesis holding and no testing
respectively)

Summary data for hypotheses holding for each aspect

Year 2005 2006 2007 2008
Group 1 3 2 1 1a 2 1 2 1 H1total H2 total H1%b H1 total (1)c H1 total (2)c H1% (1)c H1% (2)c
JBA1 1 1 NA 1 1 4 0 50 3 1 75 33.33
JBA2 1 1 1 NA 1 1 5 0 62.5 3 1 75 33.33
JBA3 1 1 NA 1 1 4 0 50 2 1 50 33.33
JBA4 1 1 NA 1 1 1 1 6 0 75 3 2 75 66.67
JBA5 NA 1 1 2 0 25 1 1 25 33.33
JBA6 1 NA 1 2 0 25 1 0 25 0
JBB1A 1 1 1 1 NA 1 1 1 1 8 0 100 4 3 100 100
JBB1B 1 1 1 1 NA 1 1 1 1 8 0 100 4 3 100 100
JBB2A 1 1 1 1 NA 1 1 1 1 8 0 100 4 3 100 100
JBB2B 1 1 1 1 NA 1 1 1 1 8 0 100 4 3 100 100
JBB3A 1 1 1 1 NA 1 1 1 1 8 0 100 4 3 100 100
JBB3B 1 1 1 1 NA 1 1 1 1 8 0 100 4 3 100 100
JBB4A 1 1 1 NA 1 1 1 1 7 0 87.5 4 3 100 100
JBB4B 1 1 1 1 NA 1 1 1 1 8 0 100 4 3 100 100
JBB5A 1 1 NA 1 1 1 5 0 62.5 3 2 75 66.67
JBB5B 1 1 1 1 NA 1 1 1 7 0 87.5 4 2 100 66.67
JBB6A 1 1 1 1 NA 1 1 1 7 0 87.5 4 2 100 66.67
JBB6B 1 1 1 1 NA 1 1 1 7 0 87.5 4 2 100 66.67
JBB7A 1 1 NA 1 1 1 5 0 62.5 3 1 75 33.33
JBB7B 1 1 NA 1 1 1 5 0 62.5 3 1 75 33.33
JBB8A 1 1 1 1 NA 1 1 1 1 8 0 100 4 3 100 100
JBB8B 1 1 1 1 NA 1 1 1 1 8 0 100 4 3 100 100
JBB9A 1 1 1 NA 1 1 1 1 7 0 87.5 4 3 100 100
JBB9B 1 1 1 1 NA 1 1 1 1 8 0 100 4 3 100 100
JBB10A 1 1 1 1 NA 1 1 1 1 8 0 100 4 3 100 100
JBB10B 1 1 1 1 NA 1 1 1 1 8 0 100 4 3 100 100
JBB11A 1 1 1 1 NA 1 1 1 1 8 0 100 4 3 100 100
JBB11B 1 1 1 1 NA 1 1 1 1 8 0 100 4 3 100 100
JBB12A 1 1 NA 1 1 1 1 6 0 75 3 2 75 66.67
JBB12B 1 1 NA 1 1 1 1 6 0 75 3 2 75 66.67
JBB13A 1 1 1 1 NA 1 1 1 1 8 0 100 4 3 100 100
JBB13B 1 1 1 1 NA 1 1 1 1 8 0 100 4 3 100 100
JBB14A 1 1 1 1 NA 1 1 1 1 8 0 100 4 3 100 100
JBB14B 1 1 1 1 NA 1 1 1 1 8 0 100 4 3 100 100
JBB15A 1 1 1 1 NA 1 1 1 1 8 0 100 4 3 100 100
JBB15B 1 1 1 1 NA 1 1 1 1 8 0 100 4 3 100 100
JBB16A 1 1 1 NA 1 1 1 1 7 0 87.5 4 3 100 100
JBB16B 1 1 1 1 NA 1 1 1 1 8 0 100 4 3 100 100
JBB17A 1 1 NA 1 1 1 1 6 0 75 3 3 75 100
JBB17B 1 1 1 NA 1 1 1 6 0 75 2 3 50 100
JBB18A 1 1 NA NA NA 2 0 33.33 2 0 100 0
JBB18B 1 1 NA NA NA 2 0 33.33 1 0 50 0
PNA1 NA NA NA 1 NA 1 1 1 4 0 80 3 1 100 50
PNA2 NA NA NA 1 NA 1 2 0 40 2 0 66.67 0
PNA3 NA NA NA NA 1 1 0 20 1 0 33.33 0
PNA4 NA NA NA NA 2 1 1 1 20 1 0 33.33 0
PNA5 NA NA NA NA 1 1 0 20 1 0 33.33 0
PNA6 NA NA NA 1 NA 1 1 3 0 60 2 1 66.67 50
PNB1A NA NA NA 1 NA 1 1 3 0 60 2 1 66.67 50
PNB1B NA NA NA 1 NA 1 1 3 0 60 2 1 66.67 50
PNB2A NA NA NA 1 NA 1 0 20 1 0 33.33 0
PNB2B NA NA NA 1 NA 1 2 0 40 2 0 66.67 0
PNB3A NA NA NA 1 NA 1 1 3 0 60 2 1 66.67 50
PNB3B NA NA NA 1 NA 1 1 3 0 60 2 1 66.67 50
PNB4A NA NA NA NA 0 0 0 0 0 0 0
PNB4B NA NA NA 1 NA 1 1 3 0 60 2 1 66.67 50
PNB5A NA NA NA 1 NA 1 1 3 0 60 2 1 66.67 50
PNB5B NA NA NA 1 NA 1 1 3 0 60 2 1 66.67 50
PNB6A NA NA NA 1 NA 1 1 3 0 60 2 1 66.67 50
PNB6B NA NA NA 1 NA 1 1 3 0 60 2 1 66.67 50
PNB7A NA NA NA 1 NA 1 1 3 0 60 2 1 66.67 50
PNB7B NA NA NA 1 NA 1 1 3 0 60 2 1 66.67 50
PNB8A NA NA NA 1 NA 1 1 3 0 60 2 1 66.67 50
PNB8B NA NA NA 1 NA 1 1 1 4 0 80 3 1 100 50
PNB9A NA NA NA 1 NA 1 1 3 0 60 3 0 100 0
PNB9B NA NA NA 1 NA 1 1 1 4 0 80 3 1 100 50
a This survey of the preferred environment was run separately to the rest of the survey during 2006. b The percentage of non-NA groups for which
hypothesis 1 holds. c Groups 1 and 2 are denoted (1) and (2) respectively.

www.manaraa.com

Information Systems Education Journal (ISEDJ) 10 (5)
 October 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 74
www.aitp-edsig.org /www.isedj.org

Table 5. Mode responses to system preference questions (percentage giving mode
response in brackets)
Year 2006 2007 2008
Group 1 2 1 2 1
If you had
free choice,
which
development
environment
would you
prefer to have
used to learn
programming?

Both JBuilder
and
Programmers
Notepad
(45.8%)

JBuilder
only
(42.1%)

Both JBuilder
and
Programmers
Notepad
(18.2%)

Both JBuilder
and
Programmers
Notepad
(25%)

Both JBuilder
and
Programmers
Notepad
(29.6%)

If you had
free choice,
which
development
environment
would you
prefer to use
to do
programming
now?

JBuilder only
(66.7%)

JBuilder
only
(52.6%)

JBuilder only
(22.7%)

JBuilder only
(12.5%),
Both JBuilder
and
Programmers
Notepad
(12.5%),
Textmate
(12.5%)

JBuilder only
(37%)

www.manaraa.com

Information Systems Education Journal (ISEDJ) 10 (5)
 October 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 75
www.aitp-edsig.org /www.isedj.org

Appendix 2: Group 1 Survey Instrument (2008)
Note: the labeling used in this survey has been modified within the paper to improve readability; for
example, B1 corresponds to JBA1 within the paper

www.manaraa.com

Information Systems Education Journal (ISEDJ) 10 (5)
 October 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 76
www.aitp-edsig.org /www.isedj.org

www.manaraa.com

Information Systems Education Journal (ISEDJ) 10 (5)
 October 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 77
www.aitp-edsig.org /www.isedj.org

www.manaraa.com

Information Systems Education Journal (ISEDJ) 10 (5)
 October 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 78
www.aitp-edsig.org /www.isedj.org

www.manaraa.com

Information Systems Education Journal (ISEDJ) 10 (5)
 October 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 79
www.aitp-edsig.org /www.isedj.org

www.manaraa.com

Information Systems Education Journal (ISEDJ) 10 (5)
 October 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 80
www.aitp-edsig.org /www.isedj.org

www.manaraa.com

Information Systems Education Journal (ISEDJ) 10 (5)
 October 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 81
www.aitp-edsig.org /www.isedj.org

